Properly immersed surfaces in hyperbolic $3$-manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Curvature Surfaces in Hyperbolic 3-manifolds

In a paper of Menasco and Reid, it is conjectured that there exist no hyperbolic knots in S3 for which the complement contains a closed embedded totally geodesic surface. In this note, we show that one can get ”as close as possible” to a counter-example. Specifically, we construct a sequence of hyperbolic knots {Kn} with complements containing closed embedded essential surfaces having principal...

متن کامل

Determining hyperbolic 3–manifolds by their surfaces

In this article, we prove that the commensurability class of a closed, orientable, hyperbolic 3–manifold is determined by the surface subgroups of its fundamental group. Moreover, we prove that there can be only finitely many closed, orientable, hyperbolic 3–manifolds that have the same set of surfaces.

متن کامل

Properly Convex Bending of Hyperbolic Manifolds

In this paper we show that bending a finite volume hyperbolic d-manifold M along a totally geodesic hypersurface Σ results in a properly convex projective structure on M with finite volume. We also discuss various geometric properties of bent manifolds and algebraic properties of their fundamental groups. We then use this result to show in each dimension d Ê 3 there are examples finite volume, ...

متن کامل

Minimal surfaces in germs of hyperbolic 3–manifolds

This article introduces a universal moduli space for the set whose archetypal element is a pair that consists of a metric and second fundamental form from a compact, oriented, positive genus minimal surface in some hyperbolic 3–manifold. This moduli space is a smooth, finite dimensional manifold with canonical maps to both the cotangent bundle of the Teichmüller space and the space of SO3(C) re...

متن کامل

Homology of Curves and Surfaces in Closed Hyperbolic 3-manifolds

Among other things, we prove the following two topologcal statements about closed hyperbolic 3-manifolds. First, every rational second homology class of a closed hyperbolic 3-manifold has a positve integral multiple represented by an oriented connected closed π1-injectively immersed quasiFuchsian subsurface. Second, every rationally null-homologous, π1-injectively immersed oriented closed 1-sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2019

ISSN: 0022-040X

DOI: 10.4310/jdg/1559786424